Smithers Rapra attended EUPOC (21st-25th May – Gargnano, Lake Garda, Italy)

The main objective of this year’s EUPOC was to focus on the most recent developments within the areas of additive manufacturing. These included: experimental aspects, chemical and physical modelling, materials and part properties, among others. Various techniques for additive manufacturing deposition were discussed: Selective Laser Sintering (SLS), Direct Laser Sintering (DLS), Inkjet Printing, Additive Layer Manufacturing (ALM). In all, the speakers provided a well-rounded global perspective on novel research for both: techniques and materials used within this field. Most presentations concluded by highlighting the challenges that are yet to be faced. On the latter, it was inevitable to acknowledge the need for the maturity and establishment of testing criteria and standards when testing a rapid-prototyped final product.

PREVIEW was invited as a participant in the poster session. This session, was less focused on the additive manufacturing side, and it was thought as a space for discussion and conversation around polymer materials. In fact, the theme of the posters was varied and well balanced, with entries ranging from instrumentation companies (e.g. Malvern showcasing a new low molecular weight multi-detector GPC system), to European projects with defined targets (e.g. Bio4self –fibre based materials for non-clothing applications-, and PREVIEW). Monday’s session was by far the most popular, and PREVIEW’s posters had around a total of 25 visitors (out of the 100 participants) who actively listened and questioned about the project. The vast majority of these visitors were of mainly informative nature, without posing many questions and having only general curiosity in the posters. Nevertheless, a couple of visitors did show particular interest in the following areas:

1) A company that does compressive moulding, was particularly interested in knowing whether the system could be transferred to this type of manufacturing technique, as he too recognised the need of monitoring process parameters. He provided his business card for future communication.

2) Peter Olmsted, Director of the Institute for Soft Matter Synthesis and Metrology at the Georgetown University, was particularly interested in the Wi-Fi communication network. His idea, had to do with using sensors strategically positioned in contact with the cone and plate, or parallel plate surface inside a rheometer to extract real-time information of the viscoelastic behaviour of polymer melts. He wanted to know whether this was feasible to achieve using Wi-Fi communication.

3) A third attendee suggested extrapolating the use of intelligent machine systems for medical diagnosis purposes, e.g. access to patients’ profiles and medications doses, to make more efficient the medical service for on-a-regular-basis patients.


PREVIEW pilot test at Promolding

After developing and small-scale testing the several subsystems for over two years, the partners in the European funded PREVIEW project (Horizon 2020) flew in to perform a full scale pilot test with the PREVIEW system at the Dutch partner Promolding.

Eurecat (Spain), Smithers Rapra (United Kingdom) and Humboldt Universität (Germany) took part in this test. Over a period of three days each team member contributed with its own specialisation in testing the system at Promolding’s new production facility.

DAS Promolding

Figure 1: Injection moulding machine with mould with PREVIEW DAS

During the first day (setup phase) three injection moulding machines were equipped with the PREVIEW data acquisition system (DAS, Figure 1). The DAS is a hardware module responsible for the adaption, amplification and digitalisation of the cavity and machine signals. These signals are supplied by cable to the PREVIEW wireless communication nodes (WCN, Figure 2) located at the machines. The nodes transmit the sensor data to the central wireless node which is connected to the PREVIEW server through Ethernet. This server node was installed in a convenient location on the production floor. All nodes together create a robust wireless network which uses a customised protocol. Also the Bluetooth beacons for the location-based content delivery were positioned throughout the production floor (Figure 3).

On the second day (test phase) the several subsystems were tested. This meant testing the data acquisition system by comparing the signals coming from the injection moulding machine and mould sensors, with the data received from the DAS. Several cables and connections were checked. Also the PREVIEW location based system (LBS) was tested. By checking the physical location on the floor with the virtual location on a floor plan displayed on a smart phone, this subsystem could be verified.

WCN

Figure 2: Wireless connection nodes, connected to Ethernet (left) and to DAS (right)

The PREVIEW server, consisting of the advanced predictive system (APS) and the content management system (CMS), and the wireless data transmission were validated by verifying the data reception, processing and storage in the database. The APS is a software algorithm to optimise the injection moulding process by reducing mould set up time and providing a quality control system.

Initially, this test went well, but once more data had been collected the server unexpectedly crashed. After a short period of recuperation from this puzzling situation, four specialists dove deep into the server software and found the stumbling block. The problem was then easily fixed. A true team effort.

In the meantime, to prepare for a life cycle assessment (LCA), some initial measurements of energy consumption of two injection moulding machines were performed, making use of a commercially available energy logger. This data is going to be compared to the data logged through the PREVIEW system to gain insight into the energy savings potentially created by making use of the PREVIEW system.

Beacons

Figure 3: Bluetooth beacons placed in several locations

The third day was available for doing a full scale test, starting with a Design of Experiments on one of the machines involved. With the data obtained, the APS was trained. The moment of truth arrived: Will the smartphone app indicate a variation in the production process and recommend a process parameter modification when we deliberately alter a parameter on that specific machine? This would mean the whole chain from signal source all the way to a message on a smartphone would work. Success! Once the injection speed was lowered, the app effectively proposed to increase the speed. Happy faces after three days of hard work.

Company Information

Promolding, located in The Hague, The Netherlands, is a product development and injection moulding company established in 1997, that focuses on developing and producing high tech products for the industrial, medical and aviation market. Recently its production facilities have expanded from 1575m2 to 3130m2. Also several dedicated project areas for developing, assembling and testing innovative client specific products, were built up.
With a production force of 12 people (including trial moulders, machine operators, material preparation, assembly and logistics), 12 injection moulding machines ranging from 15T to 800T, dozens of moulds and several materials are prepared and handled for production.
In total Promolding employs 40 people.

Promolding Pano

Figure 4: Part of Promolding’s production facilities where the PREVIEW pilot test was performed


UBER to attend ICCCN 2017

ICCCN-Logohuzb

 

The 26th International Conference on Computer Communications and Networks (ICCCN 2017) is an IEEE co-sponsored communication systems conference. The ICCCN is one of the leading international conferences for presenting novel ideas and breakthroughs in the fields of computer communications and networks. The primary focus of this year’s ICCCN is on new and original research in the areas of design, implementation and applications of computer communications and networks.

Out of all submissions, only the top 25% papers were accepted for the main technical program. Major results of the PREVIEW wireless system were accepted for publication and will appear in the conference proceedings and IEEE Xplore. Roman Naumann will give a presentation as part of the conference’s Wireless LAN, Ad Hoc and Mesh Networks (WAM) session. Roman’s presentation introduces TANDEM, a Topology-independent wireless multi-hop network protocol that implements the prioritization of in-network data to provide a more useful, timely and efficient wireless transmission protocol for the delivery of network information in manufacturing plants, where interference due to metal surroundings and factory floor topology can pose great challenges.

ICCCN 2017 will take place July 31 – August 3, 2017, Vancouver, Canada.